If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2-24m-32=0
a = 4; b = -24; c = -32;
Δ = b2-4ac
Δ = -242-4·4·(-32)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{17}}{2*4}=\frac{24-8\sqrt{17}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{17}}{2*4}=\frac{24+8\sqrt{17}}{8} $
| 8z-6=z | | 9x-8-8-4x=3x-4 | | 10m-34=136 | | 15j+31=616 | | 2b^2+12b=60 | | 4p^2-16p=-12 | | 4.5/9.7=16.9/x | | 10+1/6x=1/2x+6 | | 4/x=32/72 | | 4/5x-5=12+3/5x | | d+39/7=16 | | 7x^2+14x=21 | | 1/2x+6=-1/2x+10 | | 655=5(h-704) | | 7=19/j+74 | | 7=j+74/19 | | 6k^2-90=-12k | | 2x+3=-8+18x | | 253=11(n-976) | | 4(y-5)-y=2 | | 4=-2{1/2x1} | | 31(h+25)=930 | | 6r^2-12r=48 | | 600=65+5j | | 149+5k=794 | | 13=m+17/14 | | 1/3=x/180 | | 6+11x=-23+x | | 10n^2-80=-20n | | -7x+4=× | | 0.7(x+8.6)+2.3=6x+2.914 | | 996-h=784 |